263 research outputs found

    Robots, drugs, reality and education: how the future will change how we think

    Get PDF
    Emerging technologies for learning report - Article exploring various future trends and their potential impact on educatio

    THE DETERMINATION OF COPPER IN SEA WATER USING FLOW INJECTION WITH CHEMILUMINESCENCE DETECTION

    Get PDF
    This thesis describes the design, optimisation and shipboard deployment of a flow injection - chemiluminescence (FI-CL) technique for the determination of labile Cu(II) and total copper (by UV irradiation) in seawater. The operational parameters of the FI manifold in a UHP water sample matrix and the 1,10-phenanthroline CL reaction were rigorously optimised. Interferences to the CL reaction were investigated and the good analytical figures of merit obtained presented. The FI-CL method was modified for the determination of ultra trace levels of Cu(II) in seawater by the incorporation of a new design of micro-column containing 8-hydroxyquinoline (8HQ) resin for in-line matrix separation and preconcentration. Reagent clean-up techniques, blank procedures and a standard addition protocol are detailed. The optimised method is selective for Cu(II) in the linear range 0.1 - 50 nM, with precision of <4% (n=4) for a typical seawater analysis, and a limit of detection (3s) of 25 pM for a loading time of 90 s. The FI-CL analyser was fully automated and then validated by field deployment on the Tamar Estuary, during which its robustness, reliability and stand alone capability were demonstrated. Good accuracy was achieved for a seawater CRM analysed onboard. The near real time Cu data obtained was in good agreement with a comparative voltammetric method. The FI-CL method was further validated by field deployment on the Atlantic Meridional Transect (AMT 9) during which Cu(II) (filtered, acidified (pH 2) HNO3) in the surface waters (<250 m) of the North and South Atlantic (50°N to 50 °S) was mapped. Spatial variation in Cu(II) concentrations was observed (<0.7 to 6.1 nM) through the contrasting biogeochemical provinces encountered that representated coastal, upwelling and oligotrophic regions. Copper (II) enrichments were imposed on a trend of decreasing Cu(Il) concentrations away from European coastal waters (>2.5 nM) to open ocean gyres (< 1 nM). Away from strong input mechanisms, upper water column Cu(II) concentrations were ca. 1.5 nM, being dominated by long range aerosol input mechanisms. Input sources are fingerprinted via correlation with nutrients and hydrographic data, whilst the dominant sinks are active biological uptake and particle reactivity. Cu(II) vertical distributions through the upper mixed layer display strong relationships with chlorophyll α particularly in remote oceanic regimes. An in-line UA photo-oxidation system was constructed and optimised for the digestion of organically complexed Cu to enable near real time determination of total Cu in seawater by FI-CL. It achieved very efficient digestion of DOM (96.3 %) using a short irradiation time (600 s), with good recovery of Cu. Robustness, reproducibilty of irradiation, effective operational life and safety were considerably improved compared to existing systems. DOM rich Tamar Estuary and Celtic Sea samples were in good agreement with Cu(II) results from conventional batch UV digestion and voltammetric detection.Plymouth Marine Laborator

    The PLAT domain: a new piece in the PKD1 puzzle

    Get PDF

    Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    Get PDF
    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report

    Evaluation of the Cambridge House Playdagogy Programme: final research report (strand 1)

    Get PDF
    Evaluation of the Cambridge House Playdagogy Programme: final research report (strand 1

    Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR.

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited renal disorder caused by defects in the PKD1 or PKD2 genes. ADPKD is associated with significant morbidity, and is a major underlying cause of end-stage renal failure (ESRF). Commonly, treatment options are limited to the management of hypertension, cardiovascular risk factors, dialysis, and transplantation when ESRF develops, although several new pharmacotherapies, including rapamycin, have shown early promise in animal and human studies. Evidence implicates polycystin-1 (PC-1), the gene product of the PKD1 gene, in regulation of the mTOR pathway. Here we demonstrate a mechanism by which the intracellular, carboxy-terminal tail of polycystin-1 (CP1) regulates mTOR signaling by altering the subcellular localization of the tuberous sclerosis complex 2 (TSC2) tumor suppressor, a gatekeeper for mTOR activity. Phosphorylation of TSC2 at S939 by AKT causes partitioning of TSC2 away from the membrane, its GAP target Rheb, and its activating partner TSC1 to the cytosol via 14-3-3 protein binding. We found that TSC2 and a C-terminal polycystin-1 peptide (CP1) directly interact and that a membrane-tethered CP1 protects TSC2 from AKT phosphorylation at S939, retaining TSC2 at the membrane to inhibit the mTOR pathway. CP1 decreased binding of 14-3-3 proteins to TSC2 and increased the interaction between TSC2 and its activating partner TSC1. Interestingly, while membrane tethering of CP1 was required to activate TSC2 and repress mTOR, the ability of CP1 to inhibit mTOR signaling did not require primary cilia and was independent of AMPK activation. These data identify a unique mechanism for modulation of TSC2 repression of mTOR signaling via membrane retention of this tumor suppressor, and identify PC-1 as a regulator of this downstream component of the PI3K signaling cascade

    A coupled compressible flow and geomechanics model for dynamic fracture aperture during carbon sequestration in coal

    Get PDF
    This paper presents the development of a discrete fracture model of fully coupled compressible fluid flow, adsorption and geomechanics to investigate the dynamic behaviour of fractures in coal. The model is applied in the study of geological carbon dioxide sequestration and differs from the dual porosity model developed in our previous work, with fractures now represented explicitly using lower‐dimensional interface elements. The model consists of the fracture‐matrix fluid transport model, the matrix deformation model and the stress‐strain model for fracture deformation. A sequential implicit numerical method based on Galerkin finite element is employed to numerically solve the coupled governing equations, and verification is completed using published solutions as benchmarks. To explore the dynamic behaviour of fractures for understanding the process of carbon sequestration in coal, the model is used to investigate the effects of gas injection pressure and composition, adsorption and matrix permeability on the dynamic behaviour of fractures. The numerical results indicate that injecting nonadsorbing gas causes a monotonic increase in fracture aperture; however, the evolution of fracture aperture due to gas adsorption is complex due to the swelling‐induced transition from local swelling to macro swelling. The change of fracture aperture is mainly controlled by the normal stress acting on the fracture surface. The fracture aperture initially increases for smaller matrix permeability and then declines after reaching a maximum value. When the local swelling becomes global, fracture aperture starts to rebound. However, when the matrix permeability is larger, the fracture aperture decreases before recovering to a higher value and remaining constant. Gas mixtures containing more carbon dioxide lead to larger closure of fracture aperture compared with those containing more nitrogen
    corecore